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a b s t r a c t

The present article numerically optimizes the thermal performance of a rotary heat exchanger (RHEx)
where its internal structure is modeled as a porous medium. The objective is to maximize the RHEx’s
heat transfer rate per unit of frontal surface area (q00). The flow velocity through the porous matrix
respects Darcy’s law. Two thermal conditions between the solid matrix and the fluid are considered: (i)
local thermal equilibrium – LTE and (ii), non-local thermal equilibrium – NLTE. The numerical calcula-
tions, which are implemented using a finite volume formulation, allow us to optimize two design
variables, the length L of the heat exchanger and the porosity 4. The numerical results show that the
figure of merit is substantially affected by both design variables and that optimal values of L and 4 can be
obtained. The numerical experiments also show that the optimum porosity is not a function of the
pressure difference driving the flow across the RHEx. The study ends by addressing the effects of the
porosity distribution and differential periods between the hot and cold sides of RHEx on the figure of
merit. The numerical results are supported by a scale analysis.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Different types of heat transfer devices exist aiming to satisfy
a hungry and diverse market. While ranging broadly from
constructive and operational standpoints, heat exchangers – HEx
have been grouped according to certain key features. Shah and
Sekulic [1] present classifications of HEx based on several features:
geometry, flow direction, number of different working fluids, etc.
Furthermore, several techniques were developed aiming to facilitate
the selection and design process of various heat exchanger config-
urations; good examples are the ‘‘number of transfer units’’ – NTU
and the ‘‘log mean temperature difference’’ – LMTD methods [2].

Following the classification scheme previously discussed, the
heat exchanger under consideration in the present article could be
categorized as a counter-flow, porous-based rotational device or
simply a rotary heat exchanger (RHEx). These devices, which are
particularly suitable for gas-to-gas energy recovery, were considered
by the literature numerous times while addressing, for example,
economical aspects [3–5], conductive aspects through the internal
structure [6–9], heat recovery applications [10–12], angular speed
effects [13], leakage [14,15] and thermal issues [16–19].

In the present paper, we portray fundamental RHEx optimiza-
tion opportunities. We demonstrate these opportunities with
: þ1 418 656 7415.
osselin).
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a numerical model of rotary heat exchanger. The hot and cold sides
of the heat exchanger are subjected to independent pressure drops
and different temperature levels. The objective is to maximize the
heat transfer rate per unit of area of the RHEx under two thermal
conditions between the solid matrix and fluid: (a) local thermal
equilibrium and (ii), non-local thermal equilibrium. The numerical
results are validated by an extensive scale analysis. The funda-
mental question of how to distribute the solid matrix and fluid flow
is addressed.
2. Simplified model of heat wheel

The modeling begins by considering that the internal structure
of the rotary heat exchanger (RHEx) can be represented by a porous
structure as detailed in Fig. 1. Next, assuming that the solid and fluid
composing the porous structure are in local thermal equilibrium
and neglecting conduction heat transfer within the porous struc-
ture (these assumptions will be relaxed later) [20–22], the
conservation of energy states that

s
vT
vt
þ u

vT
vx
¼ 0 (1)

where s¼ fþ (1� f)(rc)s/(rc)f represents the dimensionless aver-
aged volumetric heat capacity which depends on the porosity 4

[23]. The following boundary conditions apply:
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Nomenclature

a heat transfer area per unit volume, m2/m3

A shape parameter for porosity distribution
B shape parameter for porosity distribution
Be Bejan number
c heat capacity, J/(kg K)
D hydraulic diameter of the channel/sphere diameter, m
h heat transfer coefficient, W/(m2 K)
K permeability, m2

L length, m
Nu Nusselt number
Pr Prandtl number
q0 heat flux, W/m2

Q00 heat transfer per unit of area, J/m2

Re Reynolds number
t time, s
T temperature, K
u velocity, m/s
x Cartesian coordinate, m

Greek symbols
a thermal diffusivity, m2/s
DP pressure drop, Pa
q angle, rad
m dynamic viscosity, kg/(m s)
r density, kg/m3

s dimensionless volumetric heat capacity
s half period, s
4 porosity

Superscripts
w dimensionless variables

Subscripts
C cold fluid stream
f fluid
H hot fluid stream
opt optimal value
s solid
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Tðx ¼ 0;0 � t � sÞ ¼ TH Tðx ¼ L; s � t � 2sÞÞ ¼ TC (2)

where s represents half of the period. The lateral side of the RHEx is
assumed adiabatic. One should notice that in the first half of the
cycle, heat is transferred from a hot fluid at TH to the internal porous
structure of the RHEx, and in the second half, heat is transferred
from the internal porous structure to a cold incoming stream at TC.
In this paper, we are interested in the periodic solution which
occurs, when T(t)¼ T(tþ 2s), after repeating several cycles. The
averaged velocity within the porous structure can be determined
from Darcy’s law [23]

u ¼ KDP
mL

(3)

where the permeability K depends on the internal structure of the
porous medium. Two different porosity geometries have been
investigated: a series of parallel channels and a packing of spheres.
The permeability for a series of parallel channels can be written
as [20]
Fig. 1. Schematic representatio
K ¼ fD2

32
(4)

where D is the hydraulic diameter of the channels, whereas for
a packing of spheres, the permeability is given by [24]

K ¼ D2f3

150ð1� fÞ2
(5)

where D is the diameter of the spheres.
The amount of energy transferred from the warm airflow to the

cold airflow was obtained by integrating over the spatial domain
the variation of internal energy contained in the solid matrix during
half of the cycle (in the periodic regime).

Q 00 ¼
ZL

0

ð1� fÞðrcÞs½Tðx; t ¼ 0Þ � Tðx; t ¼ sÞ�dx (6)
n of the heat exchanger.
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Finally, one can define the figure of merit studied in this paper as
the heat transfer rate per unit of heat wheel surface area after an
entire cycle, which is achieved by dividing Eq. (6) by the period 2s,

q00 ¼ Q 00

2s
(7)

Our objective is to maximize the heat transfer rate per unit of
surface area, Eq. (7), by varying the porosity and the length of the
system. The constitutive equations were non-dimensionalized
using the following variables and parameters.

~T ¼ T � T
TH � TC

~x ¼ x
D

~t;~s ¼ t; s
D2=a

Be ¼ DPD2

ma
~L ¼ L

D
(8)

Eqs. (1), (6) and (7) become, for a series of parallel channels

h
fþ ð1� fÞ~r~c

iv~T
v~t
þ f

32
Be
~L

v~T
v~x
¼ 0 (9)

~Q 00 ¼ Q 00

DðTH�TCÞðrcÞf
¼ ð1�fÞ~r~c

Z~L

0

h
~Ts

�
~x;~t ¼ 0

�
� ~Ts

�
~x;~t ¼ ~s

�i
d~x

(10)

~q00 ¼
~Q 00

2~s
(11)

where ~r~c ¼ ðrcÞs=ðrcÞf . For a packing of spheres, the following
expression is used instead of Eq. (9):

h
fþ ð1� fÞ~r~c

iv~T
v~t
þ f3

ð1� fÞ2
Be

150~L

v~T
v~x
¼ 0 (12)

It is important to emphasize that for the ‘‘leakage’’ to be negli-
gible, it is necessary that the travel time of the fluid across the RHEx
(i.e., from x¼ 0 to x¼ L) be short compared to the period s (i.e., L/
u� s), which implies that

~s[
32eL2

fBe
~s[

150eL2ð1� fÞ2

Bef3 (13)

for a series of parallel channels and a packing of spheres, respec-
tively. Otherwise, the RHEx does not allow for heat transfer
between the fluids and solid matrix.
3. Scale analysis and intersection of the asymptotes: local
thermal equilibrium

In this section, we propose a scale analysis of the RHEx problem
exposed in Section 2 in order to estimate its optimal features. The
system is characterized by two design variables (i.e., ~L and 4) and
three parameters (i.e., ~s, Be and ~r~c). We will present the order of
magnitude of ~q00 in two limits: large ~L and small ~L. Then, by inter-
secting these two asymptotes, we will be able to predict the
optimal length and porosity. See [23,25] for more details on this
method.

The first limiting case occurs when ~L is small, which suggests
that t� s. In this case, the temperature of the outflow stabilizes
eventually to the inlet temperature. Starting from the beginning of
a cycle, the moment when this happens scales as t w sL/u. One may
obtain this result by considering the order of magnitude of each
term in Eq. (1). Assuming the temperature at the beginning of each
cycle to be near TC, the total heat transferred from the fluid to the
porous structure may be estimated as
Q 00wð1� fÞðrcÞsðTH � TCÞL (14)

Therefore, based on Eq. (10) and assuming swð1� fÞ~r~c when
(rc)s [ (rc)f , the energy stored in the system and the average heat
transfer rate are, for both porous structures considered

~Q 00w~Ls ~q00w
~Ls

2~s

�
small ~L

�
(15)

For longer systems (t [ s), the length thermally influenced by
the inflow during the period s is x w su/s. This corresponds to the
second asymptote. Once again, this result is obtained by consid-
ering the order of magnitude of each term in Eq. (1). For such
systems, the fluid temperature will stabilize to the temperature of
the region of the porous structure unaffected by the flow. Therefore,
the heat transferred may be approximated as

Q 00wuðrcÞf ðTH � TCÞs (16)

Using Eq. (3) to express the fluid velocity in terms of f and Be for
a series of parallel channels and non-dimentionalizing with Eq.
(10), the energy stored and average heat transfer rate are given by

~Q 00w
f

32~L
Be~s ~q00w

f

64~L
Be

�
large ~L

�
(17)

Intersecting these two asymptotes allow one to estimate the
optimal length of the heat wheel and maximal heat transfer
rate

~Loptw

 
f

32ð1� fÞ~r~c
Be~s

!1=2

~q00mw

 
fð1� fÞ~r~c

128
Be
~s

!1=2

(18)

Differentiating Eq. (18) with respect to 4 and equalling to zero
yields

foptw0:5 ~Loptw

 
1

32~r~c
Be~s

!1=2

~q00mmw

 
~r~c

512
Be
~s

!1=2

(19)

These results apply to the parallel channel model. Based on this
scale analysis, the optimal porosity is independent on the governing
parameters. The optimal length of the heat wheel increases with Be
and ~s, and diminishes with the solid-to-fluid heat capacity ratio.
Finally, the heat transfer rate is an increasing function of both Be and
the solid-to-fluid heat capacity ratio, and a decreasing function of
the period ~s. Again, it should be noted that it is not possible to
decrease indefinitely the period, because the time of residence of
the fluid within the matrix must be small compared to the period.

In a similar manner, one may find expressions for the optimal
length and maximal heat transfer rate for a packing of spheres as
a function of f:

~Loptw

 
f3

150ð1�fÞ3~r~c
Be~s

!1=2

~q00mw

 
~r~cf3

600ð1�fÞ
Be
~s

!1=2

(20)

The expression f3/(1� f) is an increasing function of f for
0< f< 1. Therefore, there is no optimal porosity if the length of the
heat wheel is optimal. However, there is an optimal porosity if the
length is not fixed. The optimal porosity as a function of ~L may be
estimated using the following expression:

foptw
C

1þ C
where Ch

0@150~r~c~L2

Be~s

1A1=3

(21)

The results presented in this section will be compared to
numerical results in the next sections.
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4. Numerical optimization: local thermal equilibrium

Eqs. (9) and (12) have been solved numerically with a finite
volume approach. Mesh and time step independence were thor-
oughly tested. The heat transfer rate ~q00 has been calculated first by
using 25 control volumes and 25 time steps. The number of control
volumes was increased by a factor 2 until the relative difference
between heat transfer rates obtained with two consecutive mesh-
ing (with respect to their mean value) was smaller than 0.01. For
each number of control volumes, the number of time steps has been
independently increased by a factor 2 until the same precision was
reached for heat transfer rates. It was found that increasing the
number of control volumes and time steps above 200 did not
change significantly the value of ~q00 for all combination of param-
eters considered in this paper.

Fig. 2 shows the effect of the heat exchanger length ~L on the heat
transfer rate for three values of the Bejan number for a series of
parallel channels. The volumetric heat capacity ratio ~r~c retained
throughout the paper was 2430 which corresponds to the proper-
ties of aluminium and air. As indicated by the scale analysis, there is
an optimal value of ~L that maximizes ~q00. These values are indicated
by small white circles in Fig. 2. Also, as expected, ~Lopt increases with
the dimensionless pressure drop Be. That is because, for a given
period ~Lopt, when the available pumping power increases, larger
values of ~L can be considered. The results for non-LTE will be pre-
sented and discussed later.

Fig. 3 shows the effect of the porosity 4 on the optimal thickness
~Lopt for ~s ¼ 100. Each point on this figure is the result of an opti-
mization with respect to ~L. According to Fig. 3, ~Lopt increases
drastically with 4 and with Be. This result could have been expected
since 4 is inversely proportional to the internal flow resistance of
the RHEx (see Eqs. (3) and (4)) and Be represents the available
pumping power. Consequently, the combination of these effects
results in a faster flow through the RHEx, which demands for larger
values of ~Lopt so that the incoming heated fluid experiences
a substantial temperature drop.

Fig. 4 depicts the effect of porosity on the maximized heat
transfer rate ~q00m (the subscript ‘‘m’’ indicates that all values of ~q00

were maximized with respect to ~L). As shown by our scaling
analysis, the optimum porosity is not a function of the pressure
drop, and all values of ~q00mm (see open circles) occur at 4¼ 0.5. The
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Fig. 2. Heat transfer rate as a function of ~L and of Be with f¼ 0.5 (parallel channels).
‘‘mm’’ subscript indicates that the RHEx has been optimized twice,
with respect to 4 and ~L.

Figs. 5 and 6 show the variation of ~q00mm and ~Lopt versus Be and ~s.
As previously discussed, both variables increase with Be. Moreover,
the maximized heat transfer rate ~q00mm decreases with ~s, while ~Lopt

increases with this same parameter. Interesting is the fact that the
scale analysis was able to capture the relation between the maxi-
mized heat transfer rate and optimal RHEx length and the dimen-
sionless pressure drop and half period. This can be seen through the
dashed lines in Figs. 5 and 6, which represent a slope of �1/2 and
þ1/2, respectively, as revealed by Eq. (19) (i.e., ~LoptwðBe~sÞ1=2 and
~q00mmwðBe=~sÞ1=2).

As discussed before, for a packing of spheres, there is no optimal
porosity if the length of the wheel has previously been optimized.
Since the permeability given by Eq. (5) for a packing of spheres
tends towards infinity as 4 approaches 1, it will result in large
velocities in the RHEx and large optimal length. Therefore, the heat
transfer rate will drastically increase with 4. This result is shown in
Fig. 7 for ~s ¼ 100, where the heat transfer rate ~q00mm is an increasing
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Fig. 4. Heat transfer rate maximized with respect to ~L as a function of f and Be
(parallel channels).
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function of 4. Fig. 8 shows the heat transfer rate ~q00mm if the length of
the wheel is not optimal. On this figure, the dimensionless wheel
length ~L and half period ~s have been set to 100. As predicted by the
scale analysis, in that case there is an optimal porosity that maxi-
mizes ~q00 indicated by white circles. One can obtain a fair estimate of
this optimal porosity with Eq. (21).

5. Two-temperature model

In the previous sections, a simplified model with local thermal
equilibrium between the fluid and the solid matrix has been
assumed [20,22]. A two-temperature model including conduction
will now be used to investigate the effect of non-local thermal
equilibrium on both ~Lopt and ~q00 for the two same porous structure
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Fig. 6. Optimal length as a function of ~s and Be (parallel channels).
geometries [21]. The two-temperature model is characterized by
the following equations

ðrcÞf
�

f
vTf

vt
þ u

vTf

vx

�
¼ ha

�
Ts � Tf

�
(22)

ð1� fÞðrcÞs
vTs

vt
¼ ð1� fÞks

v2Ts

vx2 � ha
�

Ts � Tf

�
(23)

The boundary conditions are given by

Tf ðx ¼ 0;0 � t < sÞ ¼ TH Tf ðx ¼ L; s � t < 2sÞ ¼ TC (24)

for the fluid and by

vTsðx ¼ 0; tÞ
vx

¼ 0
vTsðx ¼ L; tÞ

vx
¼ 0 (25)

for the solid matrix. The boundary conditions of Eq. (25) state that
heat loss or heat gain from the surroundings is negligible. Heat
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Fig. 8. Heat transfer rate as a function of f and Be when ~L is not optimized (packing of
spheres).



J. Dallaire et al. / International Journal of Thermal Sciences 49 (2010) 454–462 459
exchange occurs only between the solid matrix and the fluid. The
total amount of energy transferred is obtained by applying Eq. (6) to
the solid matrix temperature profile.

The constitutive equations were non-dimensionalized using the
variables and parameters of Eq. (8) with respect to the fluid prop-
erties. The area of heat exchange per unit volume of porous
material for a series of parallel channels and a packing of spheres,
respectively, may be expressed as [21,24]:

a ¼ 4f

D
a ¼ 6ð1� fÞ

D
(26)

Eqs. (22) and (23) then become, for a series of parallel channels

f
v~T f

v~t
þ f

32
Be
~L

v~T f

v~x
¼ 4fNu

�
~Ts � ~T f

�
(27)

ð1� fÞrscs

rf cf

v~Ts

v~t
¼ ð1� fÞ ks

kf

v2~Ts

v~x2 � 4fNu
�

~Ts � ~T f

�
(28)

For a packing of spheres, all terms containing 4fNuð~Ts � ~T f Þ in
Eqs. (27) and (28) are replaced by 6ð1� fÞNuð~Ts � ~T f Þ.

The Nusselt number depends on the porous structure. For
a series of parallel channels, the Nusselt number may be approxi-
mated based on pipe flow correlations. Assuming a fully developed,
laminar flow over the entire length of the wheel, the Nusselt
number based on the channels diameter D is given by [23]:

NuD ¼ 3:66 (29)

For a packing of spheres, the Nusselt number, based on an
empirical correlation established in [24], may be expressed as

NuD ¼ 2þ 1:1Pr1=3Re0:6
D ¼ 2þ 1:1Pr15=4

 
~U
~L

!0:6

(30)

6. Numerical optimization: non-local thermal equilibrium

Equations (27) and (28) have been solved numerically using the
finite volume method for both porous structure geometries as
described previously. The same criterions have been used for the
mesh and time step independence as in Section 4.

Assuming LTE means that the local heat transfer coefficient h is
very large. Therefore, both fluid and solid matrix are at the same
temperature at the same location in the RHEx. However, the heat
transfer coefficient for non-local thermal equilibrium (N-LTE) is
finite, which means that the fluid and the solid matrix are not
locally at the same temperature. This results in a smaller heat
transfer rate between the fluid and the solid. Consequently, in order
to achieve its optimal heat transfer rate, the RHEx needs more heat
exchange surface. For a given porosity, the optimal wheel length
~Lopt is longer when N-LTE is assumed, as shown in Figs. 2 and 3 for
a series of parallel channels. This result remains true for a packing
of spheres.

As depicted in Fig. 4 for a series of parallel channels, the
maximized heat transfer rate ~q00mm is smaller for N-LTE and
increases with the dimensionless pressure drop Be. The optimal
porosity 4opt¼ 0.85, indicated by white circles, is greater for N-LTE
and is not a function of Be. This result, which is different from that
obtained when LTE was assumed, occurs because neither of the
conditions of validity for LTE are respected in the studied case. For
LTE to be valid, either the non-dimensional length of the wheel ~L
or period 2s must be very large. The two preceding conditions still
depend on Eq. (13), which requires the residence time of the fluid
within the wheel to be smaller than the period. A special care
should also be taken when 4 tends towards 1, since the
two-temperature model gives the same results as the one-
temperature model. Therefore, the two-temperature model is not
valid when f w 1.

As discussed for a series of parallel channels, the maximized
heat transfer rate ~q00mm is smaller if N-LTE is assumed for a packing
of spheres (see Fig. 7). Again, there is no optimal porosity if the
wheel length is optimal, for the same reasons as for LTE. There is,
however, an optimal porosity for N-LTE if ~L is not optimal, as
illustrated in Fig. 8. As expected, this optimal porosity is greater
for N-LTE.
7. Porosity distribution

An interesting question that arises is whether it could be
beneficial to distribute the solid material differently within the
RHEx [20–22,26,27]. An example of porosity distribution is given
below:

f
�

~x
�
¼ A

8<:1� 4B

"
~x
~L
� 1

2

#2
9=; (31)

This porosity is maximal at the center of the wheel and
decreases gradually towards the extremities. Therefore two shape
parameters can be varied and optimized, i.e., A and B. Because
0< 4< 1, we have that 0< A< 1 and 0< B< 1. To illustrate this
optimization opportunity, we considered the parallel channels
model.

As the fluid flows through the RHEx, its temperature difference
with the solid material diminishes, which results in a decrease of
the local heat transfer rate. In order to achieve higher heat transfer
rates, the heat exchange area per unit volume must increase. As
given by Eq. (26), the heat exchange area per unit volume in an
increasing function of &phi;. Consequently, it could be expected
that the porosity near the center of the wheel to be higher than the
one near its edges. Moreover, a symmetrical porosity distribution
could be expected since fluids enter the RHEx from both ends. As
the porosity increases, the heat storage capacity of the RHEx
decreases, which, in turn, tends to diminish the maximum heat
transfer rate. This competition between heat storage capacity and
heat exchange area per unit volume is what explain the existence of
an optimal porosity distribution.

Fig. 9a shows the heat transfer rate ~q00 for a series of parallel
channels in LTE as a function of both shape parameters A and B. ~s
and ~L were set to 100 and 35. This length was the optimal length
found in Section 4, where f was a constant. It can be seen that when
f is constant (i.e., when B¼ 0), the optimal porosity is f¼ 0.5, as
found in Section 4. However, for this length, increasing the porosity
at the center of the wheel, while decreasing it near its extremities,
results in a higher heat transfer rate, as expected.

Next we optimized simultaneously A, B and ~L. The optimal
length for a porosity distribution given by Eq. (31) in LTE with
Be¼ 106 is ~L ¼ 60, which is almost twice the optimal length found
when f was constant. Fig. 9b depicts the heat transfer rate as
a function of A and B for this length. By comparing Fig. 9a and b, it
can be seen that the maximal heat transfer rate is almost twice as
large when the porosity is not a constant, but a distribution given
by Eq. (31). The optimal porosity distribution is found to be inde-
pendent of the Bejan number (as when the porosity was constant)
and the optimal parameters are A¼ 0.95 and B¼ 0.80, which gives
a mean porosity of fw0:7. This porosity distribution is illustrated in
Fig. 10.

The same three parameters were optimized for NLTE. As for LTE,
there exist two distinct maxima: one when f is a constant (B¼ 0)
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and one when f is a function of both A and B. However, for NLTE, the
heat transfer rates corresponding to each of the two maxima are
very close. It was found that when Be ( 3�106, the optimal
porosity distribution is A¼ 0.95 and B¼ 0.85. Optimal lengths for
this distribution are relatively small. For example, ~Lopt ¼ 46 and 54
for Be¼ 1�106 and 2�106, respectively. When Be a 3�106, the
heat transfer rate of the (f¼ constant) maximum becomes higher
than that when f is a function of A and B. The optimal porosity is
then given by A¼ 0.85 and B¼ 0, which is the same optimal
porosity as the one found in Section 6. Optimal lengths when f is
a constant are much larger than those when f was not constant.
When Be¼ 4�106, the optimal length ~Lopt ¼ 163, which is three
times larger than the one found for Be¼ 2�106. This means that
there are two optimal RHEx configurations: low Be with short
wheel and the porosity distribution of Eq. (31), or high Be with long
wheel and a constant porosity. Independently, the maximal heat
transfer rate increases with Be.
8. Imbalance between the hot and cold flows

In the previous sections, the hot and cold fluid streams were
presumed to be both injected within the RHEx during half of the
period of rotation of the wheel. Since both hot and cold fluids had
the same heat capacity rates, the heat transferred from fluid to solid
matrix was the same for the first and the second half period. This
corresponds to a RHEx for which 50% of the surface area is occupied
by the hot fluid, and 50% by the cold fluid. In other words, the
optimal angle ratio qH,opt/qC,opt was presumed to be 1, where qH and
qC are the angles of the wheel in which hot and cold fluids are
injected, respectively (see Fig. 1). However, it is reasonable to
assume that the optimal angle ratio qH,opt/qC,opt will not be 1 if the
hot and cold fluids heat capacity rates differ. In this section, we
determine the optimal angle ratio when the hot and cold fluids are
driven by different Bejan numbers BeH and BeC.

Similarly to the scale analysis developed in Section 3, it is
possible to estimate the optimal length of the RHEx as a function of
BeC and BeH for LTE. The optimal heat exchanger length is such that
the length thermally influenced during the hot fluid injection time
tH scales as ~L in such a way that all the domain is properly used. The
same is true for tC, the time during which cold fluid is injected
within the wheel. From Eq. (1), it is possible to find the order of
magnitude of each time tH and tC:

tHw
sL
uH

and tCw
sL
uC

(32)

Using the fact that tHþ tC¼ 2s with Eqs. (3), (4), and (8) for
a series of parallel channels and assuming swð1� fÞ~r~c (since
~r~c[1), the following result is obtained:

~Loptw

 
f

16ð1� fÞ~r~c
BeH~s

ð1þ BeH=BeCÞ

!1=2

(33)

When BeC¼ BeH¼ Be, Eq. (33) becomes Eq. (18). From Eq. (32),
since uH is directly proportional to BeH and uC is directly propor-
tional to BeC, the following relations is obtained:

tH;opt

tC;opt
w

BeC

BeH
or

qH;opt

qC;opt
w

BeC

BeH
(34)
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Simulations were performed for a series of parallel channels to
obtain qH,opt/qC,opt as a function of BeC/BeH. Bejan number ratios
ranged from 1 to 10, where BeH was set to 106. Since the heat
capacity rate is proportional to the velocity, and the velocity is
directly proportional to Be for a series of parallel channels, using
different BeH and BeC is the same as using different heat capacity
rates. As found in Sections 4 and 6, the optimal porosity, when f is
constant, is not a function of the dimensionless pressure drop Be.
Therefore, simulations were carried with fopt¼ 0.5 for LTE and
fopt¼ 0.85 for NLTE, with a dimensionless half period ~s ¼ 100.
Note that simulations were performed with other ~s-values, but
results were exactly the same. In other words, the optimal ratio
qH,opt/qC,opt is not a function of the period. For each ratios BeC/BeH

and qH/qC, the length of the wheel has been optimized in order to
maximize the heat transfer rate.

The optimal angle ratio is reported in Fig. 11 as a function of the
flow imbalance, BeC/BeH. The following correlations were obtained
for LTE and NLTE respectively, with a maximal error of 3% for Eq.
(35) and 11% for Eq. (36):

qH;opt=qC;opt ¼ 1:0216ðBeC=BeHÞ0:8958 where 1

� <
BeC

BeH
<10 ðLTEÞ (35)

qH;opt=qC;opt ¼ 1:0838ðBeC=BeHÞ0:6837 where 1

� <
BeC

BeH
<10 ðNLTEÞ (36)

These correlations are independent on ~s and they are close to
the relation obtained from scale analysis (Eq. (34)).

Also, we report here the optimal length in the presence of flow
imbalance. Correlations for the optimal length of the wheel are
given below for LTE and NLTE, with a maximal error of 2% for Eq.
(37) and 1% for Eq. (38), and for a dimensionless half period
~s ¼ 1000:

~Lopt ¼
96:047

ð1þ BeC=BeHÞ
þ 64:238 where 1<

BeC

BeH
<10 ðLTEÞ

(37)
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Fig. 11. Optimal angle ratio as a function of the flow imbalance.
~Lopt ¼
238:8

ð1þ BeC=BeHÞ
þ 130:67 where 1

� <
BeC

BeH
<10 ðNLTEÞ (38)

These results agree satisfactorily with the scale analysis
prediction (Eq. (33)).
9. Conclusions

In the present paper, we showed that the performance of
a rotary heat exchanger could be drastically improved by properly
selecting its thickness (i.e., length L) and the porosity of the internal
thermal mass. More specifically, the numerical results show that
4opt¼ 0.5 and 0.85 for the LTE and N-LTE models, respectively,
regardless of the dimensionless pressure drop (Be), while Lopt is
strongly affected by Be (See Fig. 3).

As expected, the numerical predictions also reveal that the effi-
ciency of RHEx under idealized thermal equilibrium (LTE) condi-
tions is higher than the maximized performances obtained with the
non-local thermal equilibrium (N-LTE) model. That is due to the
high heat transfer coefficient indirectly imposed between the solid
matrix under the LTE approach (Section 6). Furthermore,
the performance of the RHEx was nearly doubled by allowing the
porosity of the porous matrix to be unevenly distributed over
the length L (Section 7). In this case, a quadratic function was used
for the porosity 4(x). The function was specifically tailored in a way
to present a maximum value at x/L¼ 0.5, and identical minimum
values at x/L¼ 0 and 1 as discussed in Section 7.

Finally, the study ends by considering the effect of the relative
period for the heating and cooling streams acting on the RHEx. This
was shown to be equivalent to RHEx thermally connecting two
streams of different heat capacities. The numerical results, which
were validated with scaling analysis, show that the flow with the
highest heat capacity rate should occupy a smaller frontal area (i.e.,
should stay in contact with the solid matrix for a shorter period
than the low heat capacity rate fluid). Correlations between the
period and the dimensionless pressure drop of each stream were
proposed.

Future studies may extend the present work by including 2-D or
3-D effects as well as fouling, frosting and leakage, since these are
realistic issues addressed by the specialized community. Further-
more, one can envision to design in detail the internal structure of
the porous core leading to a designed porous medium with non-
uniform distributions [20–22,26–28].
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